Matematika

Pertanyaan

how to solve this? i dont know how to find the centre
how to solve this? i dont know how to find the centre

1 Jawaban

  • (x - a)^2 + (y - b)^2 = r^2
    (-6 - a)^2 + (-2 - b)^2 = r^2
    (3 - a)^2 + (1 - b)^2 = r^2

    (-6 - a)^2 + (-2 - b)^2 = (3 - a)^2 + (1 - b)^2
    (-6 - a)^2 - (3 - a)^2 + (-2 - b)^2 - (1 - b)^2 = 0
    (-6 - a + 3 - a)(- 6 - a - 3 + a) + (-2 - b + 1 - b)(-2 - b - 1 + b) = 0
    (-3 - 2a)(-9) + (-1 - 2b)(-3) = 0
    27 + 18a + 3 + 6b = 0
    18a + 6b + 30 = 0
    3a + b + 5 = 0

    Misal, (a, b) terletak di y = 2x - 10, maka :
    b = 2a - 10

    3a + b + 5 = 0
    3a + 2a - 10 + 5 = 0
    5a - 5 = 0
    5a = 5
    a = 1

    b = 2(1) - 10
    b = 2 - 10
    b = -8

    Jadi, titik pusatnya = (1, -8)


    ===

    (x - a)^2 + (y - b)^2 = r^2
    (3 - 1)^2 + (1 - (-8))^2 = r^2
    2^2 + 9^2 = r^2
    4 + 81 = r^2
    r^2 = 85

    Maka, persamaan lingkarannya adalah :
    (x - 1)^2 + (y - (-8))^2 = r^2
    x^2 - 2x + 1 + y^2 + 18y + 64 = 85
    x^2 + y^2 - 2x + 18y - 20 = 0

    ===

    refleksi terhadap garis x = -1
    x' = x
    y' = 2(-1) - y = -2 - y

    (x - 1)^2 + (y - (-8))^2 = r^2
    (x - 1)^2 + (-2 - y + 8)^2 = 85
    (x - 1)^2 + (6 - y)^2 = 85
    x^2 - 2x + 1 + 36 - 12y + y^2 = 85
    x^2 + y^2 - 2x - 12y - 48 = 0